

Instructions of btdatakeymodule.aar library Page 1 of 14

Review: 1.10 Date: 21/09/2016 Author: Marco Rotoloni
File: API_Manual / Callbacks btdatakeymodule.aar

Introduction

This document describes the functions and the APIs offered by the Android
btdatakeymodule.aar library. This is conceived as an interface between an Android
application and the BTDataKey, by supplying an abstraction level for the “connection”,
“key identification”, “operator code configuration” and “data extraction” functions.

The released library is supplied with a Demo application
(CogesBTDataKeyLibDemo) which shows an example of calls to the different APIs of the
library itself. This demo is a reference point for the development of a customized
application which uses the library for the extraction of the accounting data by means of
Coges BTDataKey.

Integration of the library in a new project

This section describes a step by step guide for the creation of a new project in Android
Studio, which integrates the library released as Android Archive (AAR) and described in
these instructions.

First of all a new Android project shall be
created. In the example it is called
CogesBTDatakeyLibDemo and it offers a
main module (app) with the following
source files:

• MainActivity.java
• FragmentSelection.java
• ScanDevicesActivity.java

The project structure is shown on the
window.

The .aar library is integrated in the new project by means of a new module containing the
btdatakeymodule.aar file and from which the app module depends.

First of all save the .aar file in a new libs/ folder in the project root, e.g.
C:\Users\Owner\AndroidStudioProjects\CogesBTDataKeyModule.

To create a new module which will contain the library, select the app from the tab of the
project structure, press F4, or click on the right key, and select the Open Module Settings
item.

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 2 of 14

The window here below opens:

High on the left click on the + key,

And select the Import .JAR / .AAR Package item.

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 3 of 14

In the following window enter the path of the .aar file in the Filename field. It is easier
to click on the … key and select the btdatakeymodule.aar file which was previously saved
in the libs/ folder.

At this point the list of the project modules will report something like that is shown on
the window below:

To end the integration it is necessary to add the new module as dependency of the app
main module. To do this select the app module, and click on the Dependencies tab.

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 4 of 14

High on the right click on the + key and select the Module Dependency item. In case no
other modules are defined, the only module which can be selected is the one just created
(btdatakeymodule).

Now the structure of the demo project has
got two modules:

• app: the main module which
implements the user interface and
the logic of the calls to the
btdatakeymodule.aar library

• btdatakeymodule: the module which
contains the interface library with
the BTDataKey.

Library structure

The library consists of a class which supplies the library interface by means of some
public methods (APIs) and a public interface for the callbacks. The component of the
library which supplies the APIs is the BTDataKeyModule object, the callbacks instead are
defined by the BTDataKeyModuleIface public interface.

BTDataKeyModule API / Callbacks

The offered APIs are all public methods defined by the BTDataKeyModule object:

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 5 of 14

These methods are used to enable the different functions of the library. The

answers to the different commands and the error notifications occurs by means of the
callbacks which are defined by a BTDataKeyModuleIface public interface:
The different statuses of the library are (on the window from S_NO_INIT to
S_BUSY_DELETING):

Callbacks of the BTDataKeyModuleIface

BTDataKeyModule Status Change notification

Method:
public void onBTDataKeyStatusChanged(int statusCode)

Notification method of the status change of the BTDataKeyModule module. The
possible statuses are listed above.

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 6 of 14

BTDataKey error notification

Method:
public void onBTDataKeyError(int errorCode)

Method which notifies the errors due to the normal operation of the library and of
the interface with the BTDataKey:

• ERR_BTDK_ILLEGAL_STATUS: it is not notified by callback, but it is one of the
error codes returned by the APIs.

• ERR_BTDK_NOT_RESPONDING: it is notified when the BTDataKey stops
communicating with the library, e.g., after sending a command which needs
an answer, as calling getBTDataKeyIDdata()

• ERR_BTDK_DATA_REC_TIMEOUT: it is notified when the timeout of data receiving
expires. The timeout starts when a new data recording begins and it stops
when the success or the error is notified.

• ERR_BTDK_UNLOCKED: it is notified when the BTDataKey has got an unlocked
operator code. In this situation the library will not allow the accounting data
recording. First the operator code shall be configured with
setBTDataKeyOperatorCode().

• ERR_BTDK_OPCODE_SIZE: it is notified when the number of characters of one
of the two operator codes with which the setBTDataKeyOperatorCode()
method is called is not exactly 8.

• ERR_BTDK_OPCODE_FORMAT: it is notified when one of the operator codes with
which the setBTDataKeyOperatorCode()method is called contains some
characters which are not digits, e.g., alphabetical or special characters.

• ERR_BTDK_OPCODE_UNLOCK_FAIL: it is notified when the
setBTDataKeyOperatorCode()method fails because the writing of the
operator code of the BTDataKey cannot be unlocked. This occurs if the
operator code entered for the unlock does not correspond to the code stored
in the BTDataKey.

• ERR_BTDK_OPCODE: it is not notified by callback, but it is one of the error
codes immediately returned by the APIs.

• ERR_BTDK_IRCODE: it is not notified by callback, but it is one of the error
codes immediately returned by the APIs.

• ERR_BTDK_SERVICE_FAILED: it is notified when GATT Service discovery fails
either immediately or after a timeout.

BTDataKeyModule error notification

Method:
public void onBTDataKeyModuleError(int errorCode)

Method which notifies the errors due to the BTDataKeyModule module and caused
by the Android operating system:

• ERR_BLE_CONNECTION: error due to the use of the Bluetooth Adapter to
manage the Bluetooth Low Energy communication.

• ERR_EVA_DATA_WRITE: error occurred during the saving of the EVA-DTS file in
the Download/Coges folder.

• ERR_INTERRUPTED_PROCESS: error caused by Android which arbitrarily ended
a task of the library while this task was in wait() status on a semaphore. This

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 7 of 14

error may occur when Android is short of resources and it decides to recover
some of them by ending some tasks which are not prior for it.

• ERR_NOPATH: error caused by failing to create the path Download/Coges that
is used to store the accounting data received by BTDataKey.

Battery Level notification

Method:
public void onBTDataKeyBatteryLevelReceived(int battLevel)

Method which notifies the result of the API asking the battery level
getBTDataKeyBattLevel().

Parameters:

battLevel – Battery level notified by the BTDataKey with a [0-100] range value.

BTDataKey ID notification

Method:
public void onBTDataKeyIDdataReceived(byte[] raw, String serialNum,

String hwId, String hwVer,
String productionDate, String fwVersion)

Method which notifies the result of the API asking the identification data of the
BTDataKey, i.e., getBTDataKeyIDdata().

Parameters:

raw – The byte stream received from Bluetooth Low Energy and sent by the Key.
serialNum – The serial number of the BTDataKey in string (8 digits) format.
hwId – Coges product identification (“5100” for BTDataKey).
hwVer – The version of the HW revision of Coges product.
productionDate – Date of production.
fwVersion – Version of the FW currently installed in the BTDataKey.

For a specific Key only the fwVersion can change in the device life. This value
identifies the FW version installed in the Key and it is updated together with the
FW, when a new FW is installed.

This library does not allow the FW update of the BTDataKey.

Operator Code notification

Method:
public void onBTDataKeyOpCodeConfigurationSuccess()

Method which notifies that the change of the operator code occurred and thus the
API of operator code change, setBTDataKeyOperatorCode(), did not return any
error.

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 8 of 14

Delete success notification

Method:
public void onBTDataKeyDeleteSuccess()

Method which notifies that the accounting data delete in the BTDataKey was
successful. The delete process starts with startDeleteData().

Pending Data Status notification

Method:
public void onBTDataKeyPendingStatusReceived(boolean isDataPending)

Method which notifies the presence or not of data in the memory of the BTDataKey
to which the module is connected. In case there are some data in the Key, the
startDataRecording() API will start the recovery process of accounting data instead
of starting a new recording. If need be, to delete the data, the
startDeleteData()API can be used.

Parameters:

isDataPending – Boolean value that if it is true it notifies the presence of data from
a previous recording in the memory of the BTDataKey.

Data Packet notification

Method:
public void onBTDataKeyDataPacketReceived(int msgCounter, String msg)

Method which notifies the receiving of each DDCMP packet on the module’s side.
Unless there are setting/communication errors, the receiving of the first packet
occurs after the startDataRecording()API call.

To avoid the overcharge of the application using the library, the code to be entered
in the implementation of this callback shall be as fast as possible.

Parameters:

msgCounter – Index of the packet received. Each recording starts with the first
packet (index 0), but the number of packets can be variable.
msg – The contents of the data packet; that is a partial fragment of the EVA-DTS
file which the BTDataKey sends to the module.

Data Recording notification

Method:
public void onBTDataKeyAuditReceived(byte []raw, String dataKeyMode,

 String auditText, String auditPath)

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 9 of 14

Method which notifies the receiving of the accounting data from the BTDataKey.
When this method is called, in the BTDataKey the data has been deleted and the
Key is ready for a new recording.

Parameters:

raw – The byte stream contained in the DDCMP data packets received from
Bluetooth Low Energy and sent to the Key.
dataKeyMode – Mode by which the BTDataKey recorded the data from the System:
CL (Contactless), or IR (infrared port).
auditText – raw conversion in UTF-8 format string.
auditPath – String which identifies the path where the auditText text file was stored
(Download/Coges/<file name>).

API of the BTDataKeyModule

Init / Deinit

Method:
public void init(Context aContext, BTDataKeyModuleIface listener)

It initializes the library, creates the Download/Coges folder if it does not already
exist.

Parameters:

aContext – The Activity which instanciates the BTDataKeyModule object.
listener – The object which extends the BTDataKeyModuleIface interface. This
object will permit the notification of the APIs results or of some asynchronous errors
by the callbacks defined by the BTDataKeyModuleIface interface.

The Download/Coges folder is used to store the recording file extracted from the
BTDataKey.

At the end of recording the file is not automatically deleted.

Method:
public void deinit()

It frees the resources used by the library, by disconnecting the communication with
the Bluetooth Low Energy device, if active.

Method:
public int setListener(BTDataKeyModuleIface listener)

It registers the new object which will answer to the library notifications. This
method can be called in all statuses, but S_READY and S_CONNECTED.

Parameters:

listener – The object which extends the BTDataKeyModuleIface.

The first operation to be executed by the user class (i.e. ScanDevicesActivity) of

the library to connect to the Key is to initialize the library. The initialization requires the

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 10 of 14

“Context” of who is calling, in order to get a BluetoothAdapter, and manage the Bluetooth
communication by means of an internal service of the library.

The initialization requires the listener too, that is the object which implements the
BTDataKeyModuleIface interface, the listener anyway can be initialized at null, and
configured afterwards with the setListener() method. Many of the library APIs
however return ERR_BTDK_ILLEGAL_STATUS if they are called while the listener is not
configured.

As soon as the BTDataKeyModule object is instantiated, the library finds itself in

the S_NO_INIT status. In this status it is possible to call only the init()method. After
calling init(), the module enters the S_BUSY status till the Bluetooth service of the
library does not succeed in connecting and the library enters the S_DISCONNECTED status.

Now the user can start a connection to the BTDataKey.

Viceversa deinit() unregister the service.

Get Status

Method:
public int getStatus()

It immediately returns to the current status of the Key. The possible statuses are
reported in the Library structure section.

Connect / Disconnect

Method:
public int connect(BluetoothDevice aDevice)

It starts a connection to a Coges BTDataKey. This method can be called only in the
S_READY status.

Parameters:

aDevice – Bluetooth Low Energy device to be connected to.

Method:
public int disconnect()

It ends the connection to the Bluetooth device which is connected. This method
can be called only in the S_READY, or S_CONNECTED statuses.

These methods require the connection/ disconnection to a BLE device. The

connection method can be called only when the library is in S_DISCONNECT status. If the
connection request starts successfully, the library enters the S_BUSY status. When the
connection to a compatible BTDataKey occurs, the module changes the status and enters
the S_CONNECTED one. This status is not notified, as the module is enabled to recording
only after receiving the operator code status (locked/ unlocked) which is stored in the
Key.

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 11 of 14

When the connection is carried out, that is when module passing to the S_CONNECTED
status, the request of the Operator Code occurs automatically.

If the operator code of the Key is UNLOCKED, an error is notified by callback,
otherwise the S_READY status is notified, which enables all the Key functions.

Get Key Identification data / Get Battery Level

Method:
public int getBTDataKeyIDdata()

It requests the identification data of the connected BTDataKey. The Key enters the
S_BUSY_UNIQUE status and the result is notified by onBTDataKeyIDdataReceived(),
when the status returns to S_READY. This method can be called only in the S_READY
status.

Method:
public int getBTDataKeyBattLevel()

It requests the battery level of the connected BTDataKey. The Key enters the
S_BUSY_BATT status and the result is notified by
onBTDataKeyBatteryLevelReceived(), when the status returns to S_READY. This
method can be called only in the S_READY status.

By means of the getBTDataKeyIDdata() and getBTDataKeyBattLevel()methods, in

the S_READY status the user class of the module can ask the identification data to the Key
(two different BLE services are necessary to get them: Unique Data Char of Coges
Configurations service and DFU frame Char of Coges DFU service).

Set BTDataKey Operator Code

Method:
public int setBTDataKeyOperatorCode(String opcodeOld, String opcodeNew)

Parameters:

opcodeOld – The operator code currently stored in the BTDataKey.
opcodeNew – The new operator code which will replace the opcodeOld in the Key
memory.

It changes the operator code in the BTDataKey. If successful
onBTDataKeyOpCodeConfigurationSuccess()will be notified, otherwise an error is
notified. This method can be called only in the S_READY status.

Pending Data Check

Method:
public int getBTDataKeyPendingStatus()

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 12 of 14

This API permits to request the status of the data memory to the BTDataKey
currently connected. In case the Key answers to the command, the status of the data in
the Key is asynchronously reported by a boolean parameter with the callback
onBTDataKeyPendingStatusReceived(). If there are data in the memory of the Key, the
parameter will be valued true, otherwise it will be false. This method can be called only
in the S_READY status.

Delete Data

Method:
public int startDeleteData()

This API starts the delete process of data in the memory of the BTDataKey which is

currently connected. This method can be called only in the S_READY status.
Remember that the accounting data in the Key are not maintained in its memory in

case the sending process ends successfully. For a detailed guide of how to use the
BTDataKey see the instructions of the device.

Data Recording

Method:
public int startDataRecording(byte passwordIR[])

Parameters:

passwordIR – The security code used for extracting the data in IR mode. This code
is ignored if the recording mode is Contactless (CL).

This is the main API of the library, in other words it enables the recording process

from the Key. If the recording process is successful, that is a EVA-DTS file with the
accounting data sent by the system to which the BTDataKey is connected is received, the
file is saved in the Download/Coges folder and the success notification is sent by callback:
onBTDataKeyAuditReceived().

Remember that the notified data in case of success are: the byte stream of the
data contained in the DDCMP packets sent by the BTDataKey, the recording mode by which
the data are extracted (IR or CL), the conversion of the byte stream into a string, the path
where the EVA-DTS file was stored (Download/Coges/<file name>).

In case of failure, a corresponding error is sent by the specific callbacks.

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 13 of 14

Demo User Interface

The demo application is very simple and austere, as its aim is to explain how to use
the APIs in the BTDataKeyModule object to get the identification information from the
Key and carry out the data collection. The Activity which implements the user interface
which uses the library for the data collection is the one executing the device selection
(ScanDevicesActivity). This Activity starts by an “Intent” as soon as the RECORD
DATA button is clicked.

The library APIs are called by directly acting on the BTDataKeyModule object,

while the answers are managed in asynchronous way by callbacks. To react to the
callbacks it is necessary to register a Listener, that is an object implementing a specific
interface: BTDataKeyModuleIface.

BTDataKeyModule is a private object of the ScanDevicesActivity class,

therefore as soon as the RECORD DATA button is clicked, this object is instantiated.
The connection to the Key occurs later, when the device to be connected to is

selected.

The listener of the BTDataKeyModule object is the ScanDevicesActivity,
that is the same Activity which implements the BTDataKeyModuleIface interface.

As soon as the device is selected from the list obtained by the

ScanDevicesActivity, in the onItemClick() method, the following:

 mBTDataKeyModule.init(this, ScanDevicesActivity.this) is called;

On the callback for managing the status change of the module
(onBtDataKeyStatusChange), when the status becomes S_READY, the request of the
Key identification data is entered. This API call IS NOT COMPULSORY, as the module

COGES S.p.A. API_BTDataKeyModuleAAR_Manual_1.10_EN.docx Page 14 of 14

S_READY status already enables all the library functions, among which the accounting data
collection API: startDataRecording().

In our example, in case of error a message is displayed, in successful case, instead,

in the implementation of the onBTDataKeyIDdataReceived()callback, the Key
battery level is requested. This request too is made only for information purposes, and it
is not necessary for collecting the data.

In case of error a message is displayed, in successful case, instead, the library calls

onBTDataKeyBatteryLevelReceived(). In the implementation of this last callback a
request of accounting data reading is entered, that is the call to the
startDataRecording()method.

In case the data arrive, the onBTDataKeyAuditReceived()callback is called, to

which is connected the display of an alert dialog notifying the data saving. In case of error
a message is reported.

This is only an example to show how to use the library functions. The user is free
to use the library as he prefers.

	Introduction
	Integration of the library in a new project
	Library structure
	BTDataKeyModule API / Callbacks

	Callbacks of the BTDataKeyModuleIface
	BTDataKeyModule Status Change notification
	Method:

	BTDataKey error notification
	Method:

	BTDataKeyModule error notification
	Method:

	Battery Level notification
	Method:
	Parameters:

	BTDataKey ID notification
	Method:
	Parameters:

	Operator Code notification
	Method:

	Delete success notification
	Method:

	Pending Data Status notification
	Method:
	Parameters:

	Data Packet notification
	Method:
	Parameters:

	Data Recording notification
	Method:
	Parameters:

	API of the BTDataKeyModule
	Init / Deinit
	Method:
	Parameters:
	Method:
	Method:
	Parameters:

	Get Status
	Method:

	Connect / Disconnect
	Method:
	Parameters:
	Method:

	Get Key Identification data / Get Battery Level
	Method:
	Method:

	Set BTDataKey Operator Code
	Method:
	Parameters:

	Pending Data Check
	Method:

	Delete Data
	Method:

	Data Recording
	Method:
	Parameters:

	Demo User Interface

