
Basic For Android Wednesday, 20 June 2012 Page 115

19. Using the Weather Class
Classes are brand new in VB4A and as a result 90% of the earlier exercises should be

rewritten to include them. Classes help prevent spaghetti code by giving order to the

variables you create by putting them in a unified place and being able to operate on them as

you wish. It cuts down on repetitive code and allows for libraries that can be added to

projects.

In this case we are making a weather class to hold all the data from Weather Underground.

In this exercise to strip it back to the raw structure I use typed in data instead of calling it

from the server. That will be added later after the class used becomes more clear.

The process of the class is relatively easy to follow.

Overview – specifics at the end

Make a new Class Module named Weather.

To pass data to that class in the Main Activity create a new instance of the class

Dim myweather As weather

Pass data through the initialise command to the Class. (these are values for weather
conditions)

myweather.Initialize("17","90","ENE","3","-2","15","0")

In the Weather class the data is fed in through the initialise sub.

Sub Initialize(temp_c,relative_humidity, wind_dir,wind_kph,windchill_c ,
feelslike_c, precip_today_string As String)

Then you pass it to the Private variables which are variables that can only be used in the

class. Private variables are traditionally prefixed with m_ or just _ at the beginning just to

make them obvious.

m_temp_C = temp_c

m_relative_humidity = relative_humidity

m_wind_dir = wind_dir

m_wind_kph = wind_kph

m_windchill_c = windchill_c

m_feelslike_c = feelslike_c

m_precip_today_string = precip_today_string

Once the private variables have the data you can do what you want with it in subs that you

name yourself. This is just an example of using the private variables and creating your own

variables to hold data.

Sub gettemp_c

Dim temp As String

Dim m_temp As Double

Basic For Android Wednesday, 20 June 2012 Page 116

m_temp = m_temp_C

If m_temp_C <5 Then

m_temp_C = m_temp_C &" C - cold"

Else If m_temp_C <10 Then

m_temp_C = m_temp_C &"C - not so cold"

Else If m_temp_C >10 Then

m_temp_C = m_temp_C &"C - Go Running!"

End If

temp = "Temperature = " & m_temp_C & CRLF & "Windchill = " &
m_windchill_c & CRLF & "Feels like = " & m_feelslike_c

Return temp g

End Sub

Return temp holds whatever data you want to go back into the activity. You can use

anything as long as it has Return at the beginning.

For example

Sub getrelative_humidity

Return m_relative_humidity

End Sub

To get the data back in your Activity just use myweather.whatever

you want.

lbltemp.text = myweather.getwinddetails

lblwind.text = myweather.gettemp_c & ", " &
myweather.getwind_dir &", Wind Speed " &
myweather.getwind_kph

And that’s it!!!! Code over the page

Basic For Android Wednesday, 20 June 2012 Page 117

Activity code

Here is the Activity code for the weather app. Its just a standard program

down to the Sub download

'Activity module

Sub Globals

 Dim btnrun As Button

 Dim lbltemp As Label

 Dim lblwind As Label

End Sub

Sub Activity_Create(FirstTime As Boolean)

 Activity.LoadLayout("main")

 download

 End Sub

Sub download

‘create an instance of the weather class

Dim myweather As weather

‘Pass data to that class

myweather.Initialize("17","90","ENE","3","-2","15","0")

‘Show the output from that class in the labels

lbltemp.text = myweather.gettemp_c

lblwind.text = myweather.getwinddetails & ", " & myweather.getwind_dir
&", Wind Speed " & myweather.getwind_kph

End Sub

Basic For Android Wednesday, 20 June 2012 Page 118

Class Module code

'Class module

'I want a class that holds the weather items

Sub Class_Globals

 'internal _private variables used just in this class

Private m_temp_C, m_relative_humidity, m_wind_dir,

m_wind_kph,m_windchill_c, m_feelslike_c, m_precip_today_string As

String

End Sub

'Initializes the object. You can add parameters to this method if needed.
'data goes in through temp_C and relative_humidity to _temp_C and
_relative_humidity

'Pass the data from the Main Activity to the class in through Sub
intialise

Sub Initialize(temp_c, relative_humidity, wind_dir, wind_kph,

windchill_c, feelslike_c, precip_today_string As String)

'the incoming data is passed to the internal private classes

m_temp_C = temp_c

m_relative_humidity = relative_humidity

m_wind_dir = wind_dir

m_wind_kph = wind_kph

m_windchill_c = windchill_c

m_feelslike_c = feelslike_c

m_precip_today_string = precip_today_string

End Sub

Sub gettemp_c

Dim temp As String

Dim m_temp As String

m_temp = m_temp_C

If m_temp_C <5 Then

m_temp = m_temp_C &" C - cold"

Else If m_temp_C <10 Then

m_temp = m_temp_C &"C - not so cold"

Else If m_temp_C >10 Then

m_temp = m_temp_C &"C - Go Running!"

temp = "Temperature = " & m_temp & CRLF & "Windchill = " &

m_windchill_c & CRLF & "Feels like = " & m_feelslike_c

‘Return is what is returned, when you call the sub

Return temp

End Sub

Sub getwinddetails

Dim wind As String

Basic For Android Wednesday, 20 June 2012 Page 119

wind ="Wind Speed = " & m_wind_kph & CRLF & "kph, Direction = "&
m_wind_dir & CRLF &"Windchill = " & m_windchill_c

Return wind

End Sub

Sub getrelative_humidity

Return m_relative_humidity

End Sub

Sub getwind_dir

Return m_wind_dir

End Sub

Sub getwind_kph

Return m_wind_kph

End Sub

Sub getwindchill_c

Return m_windchill_c

End Sub

Sub getfeelslike_c

Return m_feelslike_c

End Sub

Sub getprecip_today_string

Return m_precip_today_string

End Sub

